Thiol-Catalyzed Stereoselective Transfer Hydroamination of Olefins with N-Aminated Dihydropyridines

Joyram Guin, Roland Frohlich, Armido Studer *Angew. Chem. Int. Ed*., Early View.

Current Literature Masafumi Ueda January 5, 2008

Hydroaminations of olefins

2. Amination catalyzed by transition metals

J. Organometal. Chem. **1974**, *72*, 127.

Most of the hydroaminations successfully conducted are using transition metals as catalysts. However, many functional groups are not tolerated, therefore these methods lack generality.

> *Tetrahedron*. **1983**, *39*, 703. *Chem. Rev.* **1998**, *98*, 675.

Addition of N-centered radical to olefins

Peroxide-initiated cyclization of N-chloro amide: Cl atom transfer reaction

Stannyl radical-mediated cyclization of sulfenamide

Tetrahedron. **1994**, *50*, 1275.

The addition of N-centered radical to alkenes is well established.

However, radical additions of amines or amine derivatives to olefins by H-transfer processes are not known to date.

Addition of N-centered radical to olefins via H transfer reaction using NH compounds

H transfer from N to C radical is not an efficient step.

The reverse reaction, H transfer from C to N radical, is favored process.

Therefore, the direct radical hydroamination via H transfer reaction using NH compounds is not feasible.

Studer's previous study – the Concept

the corresponding C radical.

to deliver an aminyl radical and **3**

and the desired hydroamination product.

Amino cyclohexadiene **1** was used as a N-radical precursor and a reducing reagent.

Preparation of amino cyclohexadiene **1**

Studer's previous study

56%

19 (42%, $R =$ SiMe₃)

Studer's previous study

The reduction of C radical with cyclohexadiene is slow. Therefore, reduction of α -oxy radical cannot efficiently complete with telomerization.

This problem can be solved by using polarity reversal catalysis.

Polarity reversal catalysis

H atom transfer reaction

$$
Nuc1 + H-Cat
$$
\n
$$
electrophilic radical
$$
\n
$$
Cat^* + H-Nuc2 \longrightarrow H-Cat + Nuc2 + H-Cat; polarity reversal catalyst
$$

Chem. Soc. Rev. **1999**, *28*, 25.

Studer's previous study

More efficient chain reaction using thiol as a polarity reversal catalyst

Drawbacks

- 1) Large-scale synthesis of amino cyclohexadiene **1** is rather tedious.
- 2) compound **1** readily decomposes under acidic conditions.
- 3) Stereoselective hydroaminations are highly unlikely since reactions have to be conducted at $140 \degree C$.

This work

Radical transfer hydroamination with N-aminated Hantzsch ester

Synthesis of N-aminated Hantzsch ester

N-Aminated Hantzsch ester was readily prepared on a large scale in two steps.

Hydroamination of norbornene with N-aminated Hantzsch ester under different conditions

[a] Initiator: 0.1 equiv of Et₃B or 0.3 equiv of AIBN were used. [b] Yields of isolated products. [c] Air was used as $O₂$ source.

Hydroamination of various alkenes

Highly regioselectivity to give anti-Markovnikov product

Stereoselective radical transfer hydroamination

20a-h. 21a.b. 22

23a-h, 24a, b, 25

Entry	Olefin	R^1	R^2	Yield [%] (product)	d.r.
1	20a	iPr	Et	47 (23a)	$13:1^{[a]}$
2	20 _b	iPr	Bu	48 (23b)	$13:1^{[a]}$
3	20c	iPr	iPr	33 $(23c)$	$13:1^{[a]}$
4	20d	iPr	t Bu	30(23d)	$20:1^{[a]}$
5	20e	iPr	$PMB^{[c]}$	40 (23e)	$13:1^{[b]}$
6	20f	iPr	(CH ₂) ₃ Ph	44 $(23 f)$	$13:1^{[b]}$
7	20g	iPr	$(CH2)3CO2Et$	41 $(23g)$	$13:1^{[b]}$
8	20 _h	iPr	(CH ₂) ₂ OAc	48 (23h)	$13:1^{[b]}$
9	ent 21a	Ph	Et	48 (ent-24a)	$11:1^{[b]}$
10	$ent-21b$	Ph	iPr	34 (ent-24b)	$11:1^{[b]}$
11	22	t Bu	Et	48 (25)	$14:1^{[a]}$

[a] Diastereomeric ratio (d.r.) determined by gas chromatography. [b] d.r. determined by ¹H NMR spectroscopy. [c] PMB = $para$ -methoxybenzyl.

Molecular structure of the major isomer of the protected 1,2-diamine **23c**.

Stereochemistry

Energy difference between the two conformers

Summary

- 1) The synthesis of N-aminated dihydropyridine as a novel precursor for the generation of carbamoyl radical.
- 2) Radical anti-Markovnikov hydroaminations on various olefins were performed.
- 3) Protected vicinal diamines were prepared with good stereoselectivities by hydroamination of chiral enecarbamates.